

Data Mining on Loan Default Prediction

Boston College
Haotian Chen, Ziyuan Chen, Tianyu Xiang, Yang Zhou

May 1, 2015

Abstract
This Final Project investigates a variety of data mining techniques both theoretically and

practically to predict the loan default rate. We have examined logistic regression, decision tree,
extra tree classifier, generalized regression neural network and gradient boosted regression tree.
The performance was evaluated by mean absolute error, and the best result we have for this
figure is 0.51787 produced by two stage gradient boosted regression. The implementation of
these methods was conducted both on Matlab and Python with scikit-learn library.

1. Introduction
The main problem that we try to solve in our final project is to predict the loan default

rate. Accurate prediction of whether an individual will default on his or her loan, and how much
loss it will incur has a practical importance for banks’ risk management. Nowadays, banks have
included a large amount of information in its evaluation of loan issuance, and some of these
information has a vague causal relationship with the loan default rate. The growing amount of
data due to improved data capture and data storage technology has bring us to a new perspective
on this problem which is used to be accomplished by financial and economic analysis. Therefore,
in this project, we would apply our knowledge from data mining class and test a variety of data
mining approaches on this problem.

This data mining task, in nature, is a regression task as the target attribute, loan default
rate is a continuous numerical value. However, as we improve our model, there is some
variations. At first, we consider it as a one-stage regression model described above. We later
found that defining this task as a two-stage regression model could improve the performance.
Specifically, a two-stage task will first conduct a classification task to separate the default ones
from the non-default ones, and then it will conduct a regression task in order to determine for
each default one, how much loss it will incur. In the past, several sophisticated machine learning
methods have been employed such as neural networks, random forests, support vector machine
and particularly, the most popular one, logistic regression (Hand, 2009). A benchmark paper of
two-stage model was written by Loterman where 5 datasets were tested (Loterman, 2012). Some
of his major findings state that non-linear techniques, such as support vector machine and
artificial neural nets outperform traditional linear techniques. Later literature tends to be in favor
of his conclusion (Tobback, 2014). This brief literature review has pointed us to a good direction
for this project.

Our project will include intensive amount of theoretical research and implementation as
well. The comparative study of data mining techniques will help us build a comprehensive
understanding of data mining as a subject and also find a specific application of it in financial
industry. We also seek a hands-on experience and get familiarized with standard tools for data
mining such as scikit-learn in python. The deliverables of this project will consist of two parts.
Haotian Chen and Yang Zhou will be mainly responsible for the methodology research and
literature review; therefore, they deliver the research paper as well as the presentation. On the
other hand, Ziyuan Chen and Tianyu Xiang will be mainly responsible for the implementation of
data mining techniques; thus, they produce necessary statistics and diagrams for the project.

Based on our preliminary research, we are expecting some serious challenges. The
dataset we found for this project is quite large, and it is much larger than the ones we have
worked with in our class in terms of dimensionalities and number of instances. The project
requires strong computational power for some training models as well as long period of training
time. Dimensionality reduction is necessary during prepossessing considering our limited
computational power. Also, the large dataset has a significant amount of missing values that has
to be treated for some training models. Moreover, familiarizing scikit-learn toolkit will take
some effort as we have little experience with this platform.

2. Dataset Description and Performance Evaluation Criteria
The dataset we worked on is provided by Imperial College London (Imperial College

London, 2015). The dataset was provided for the purpose of a world-wide data mining
competition. It is separated into two parts, a training set and a testing set. For the training set, it

has 770 attributes and a target attribute, “loss”. The “loss” attribute has been normalized to a
score from 0 to 100 where 0 means no default, and the larger the score, the larger the loss
incurred. This dataset contains 105,476 pieces of loan history, but in order to protect the privacy
of borrowers, the name of these attributes are all erased and replaced with non-descriptive names
such as “f1” and “f2”. We will train our model on the training set and test the model on the
testing set. The dataset in average has 9% defaults, where the average loss incurred is 8.6. Figure
1 has shown its distribution. The percentage of instances that have missing value is 50%.

Figure 1. Default Instances Distribution Histogram

The choice of measurement metrics is fairly self-explanatory as the bank want to

minimize the prediction error. The project will be evaluated by the mean absolute error
(MAE), which is defined below:

The absolute difference of actual loss and predicted loss is averaged over the size of test
dataset. The lower the MAE, the better the prediction result is. The stubborn predictor of
all default has a MEA of 0.8 which is a benchmark for our project. We don’t have a
theoretical performance upper limit for comparison, but we will try to minimize MAE as
much as possible.

3. Methodology
3.1 Generalized Regression Neural Network

The first model we used is the Generalized Regression Neural Network (GRNN),
which is a kind of neural network that specializes in solving function approximation
problems (Ahangar, Yahyazadehfar , & Pournaghshband , 2010). The GRNN model is
generally constructed with four layers: Input Layer, Pattern Layer, Summation Layer, and
Output Layer.

Figure 2. General Regression Network Architecture (Cigizoglu & Alp, 2006)

The first layer is designed to receive information. Each input neuron corresponds
to each selected predictive feature. The pattern neurons are used to process the
information and build up the relationships between input data and each training sample.
Thus, the number of pattern neurons is equal to the number of training data. The pattern
neurons are then combined through summation neurons to produce the final output.

A simple algorithm of the network is:

 1. Input sample vector 𝑥 of input neurons

 2. For each training vector 𝑡! :

Calculate the Euclidean Distance:
𝑑𝑖! = 𝑥 − 𝑡! !(𝑥 − 𝑡!)

Calculate the weights (Pattern Neurons) using the activation function:

𝑤! = 𝑒!
!"!
!!!

 𝜎 is the smoothing parameter that needs to be tuned.

3. Calculate the two summation neurons:

N = 𝑌! 𝑤! (𝑌! is the output of the training sample 𝑥!)

D = 𝑤!

 4. Output for 𝑥 is

𝑌 𝑥 =
𝑁
𝐷

This one stage regression model is implemented on Matlab. Since the training data
contains 770 attributes, which requires a huge computational power, we first apply the
correlation-based attribute subset selection method for feature extraction. Also, we chose
the mean value substitution method to deal with the missing values in the dataset.
Compared to case deletion method, mean substitution is a more appropriate treatment in
this case. Given the dataset contains non-descriptive features and large number of NaN
values, mean substitution can guarantee that no relevant feature is eliminated, and the
large number of instances also ensures the replaced values are reasonable.

After the preprocessing step, four features are selected and we use the linear
combinations of these four as the predictor variables. With the training data and
predictive features, we create the network using the build-in function “newgrnn”. Then,
the testing sample is applied to the network to predict the loss rate for each loan. MAE of
the model is computed in the end in order to evaluate the model’s performance.

3.2 Regression Decision Tree
We have been quite familiar with the classification decision tree from our class,

but this task requires a regression decision tree which can produce continuous value as
the result. The regression decision tree works in a similar fashion. The core algorithm for
building decision tree is developed by Quinlan called ID3 (Quinlan, 1986). It’s a top-
down, greedy search through the space of possible branches. The ID3 algorithm can
construct a regression decision tree by measuring standard deviation reduction for each
step. The advantage of using regression decision tree is the fact that the algorithm will
conduct the feature selection whereas for many other methods, we will have to figure out
an appropriate feature selection before application of those methods. However, the
disadvantage about this method is that we might into the problem of overfitting, and we
have to find a good stopping criteria.

3.3 Other Techniques Explored
We have also chosen a few techniques from the scikit-learn package and test them

based on our evaluation metrics. Some of these techniques include logistic regression,
gradient boosted regression trees (GBRT), and supported vector machine. For feature
selection, we tried extra tree classification, F regression and logistic classifier. Gradient
boosted regression was able to produce the lowest MAE result. This technique was
introduced by Friedman in 2001, and it was learned by different loss functions (Friedman,
2001). Detailed implementation was summarized by Natekin and Knoll who states that it
is effective in capturing non-linear function dependencies despite high memory
consumption required (Natekin & Knoll, 2013).

4. Result
The efficiency of the GRNN model is extremely low. It takes about 500 times for

a total of about 200 thousand iterations with 16GB RAM and 8-core CPU. The MAE
obtained by using this one-stage regression model is 0.81617. This result is much worse
than our expectations and it does not even beat the benchmark, which is 0.81375.
 The one-stage regression decision tree improves the result, and figure 3 shows its
result over various maximum tree depths.

Figure 3. One-Stage Regression Decision Tree MAE over Depth

The lowest MAE we can reach using this method is 0.68258.
 Among all the techniques we have explored, the best result was found using
gradient boosted regression tree with a two-stage approach. Specifically, we first use
gradient boosted classifier to predict a binary target, default or not, by training on the
whole dataset. Next, we conduct the gradient boosted regression tree only on those that
are predicted to default by training only on the default instances. This method gives us a
MAE of 0.51. We also test a variety combination of classifier and regression method on
these two stages. For example, decision tree on both stages has a MAE of 0.69; decision
tree on first stage and gradient boosted regression tree on second stage have a MAE 0.57.

Both logistic regression and supported vector machine consume two much computational
power and take too long to train and we have to discard the result.

5. Conclusion
In our experiment, the one stage GRNN model does not perform well. An

alternative feature extraction may be used in the future to select more relevant attributes.
Moreover, since the network we built with the training data is relatively large, input all
the testing data to the network is extremely time consuming. A combination of
classification and regression is more advantageous in improve the efficiency and gain a
more accurate result. Based on the above reasoning, we found the two-stage gradient
boosted regression tree was able to minimize the MAE. Among 675 teams in this
competition, our score has a rank of 71, and we believe it is still an achievement for
beginners in this field.

6. References
Ahangar, R. G., Yahyazadehfar , M., & Pournaghshband , H. (2010, February). The Comparison of

Methods Artificial Neural Network with Linear Regression Using Specific Variables for
Prediction Stock Price in Tehran Stock Exchange. International Journal of Computer Science and
Information Security, 7(2), 41.

Cigizoglu, H. K., & Alp, M. (2006, February). Generalized Regression Neural Network in Modelling
River Sediment Yield. Advances in Engineering Software, 37(2), 63-68.

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of
Statistics, 29(5), 1189-1232.

Hand, D. J. (2009). Mining the past to determine the future: Problems and possibilities. International
Journal of Forecasting, 25(3), 441-451.

Imperial College London. (2015). Retrieved from https://www.kaggle.com/c/loan-default-prediction/data

Loterman, G. B. (2012). Benchmarking regression algorithms for loss given default modeling.
International Journal of Forecasting, 28, 161-170.

Quinlan, R. J. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106.

Tobback, E. M. (2014). Forecasting Loss Given Default models: impact of account characteristics and the
macroeconomic state. Journal of the Operational Research Society, 65, 376–392.

7. Appendices

GRNN Implementation Code

Appendices

GRNN Matlab Implementation Code

Other Python Implementation Code

import numpy as np
from sklearn import tree
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

def load_data():
 train = np.genfromtxt(open('train_v2.csv', 'rb'), delimiter=',', skip_header=1)
 test = np.genfromtxt(open('test_v2.csv', 'rb'), delimiter=',', skip_header=1)
 # clean data
 train = clean_data(train)
 test = clean_data(test)
 # separate instances and target
 xs = train[:, range(1, 770)]
 ys = train[:, -1]
 ts = test[:, range(1, 770)]
 # clear out two features causing overflow
 xs = np.delete(xs, 388, 1)
 ts = np.delete(ts, 388, 1)
 xs = np.delete(xs, 616, 1)
 ts = np.delete(ts, 616, 1)
 # make a binary target
 ysb = np.zeros(len(ys))
 ysb[ys > 0] = 1
 return xs, ys, ysb, ts

def clean_data(data):
 means = np.nanmean(data, axis=0)
 nan_index = np.where(np.isnan(data))
 data[nan_index] = means[nan_index[1]]
 return data

from sklearn.ensemble import ExtraTreesClassifier

select 154 features using ExtraTreesClassifier
def feature_selection(xs, ys, ts):
 forest = ExtraTreesClassifier(n_estimators=250, random_state=0)
 forest.fit(xs, ys)
 importances = forest.feature_importances_

 std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0)
 indices = np.argsort(importances)[::-1]
 xs_selected = xs[:, indices[:150]]
 ts_selected = ts[:, indices[:150]]
 xs_selected = add_golden_features(xs, xs_selected)
 ts_selected = add_golden_features(ts, ts_selected)
 return xs_selected, ts_selected

see Tianyu's code for computation of indices of these features
def add_golden_features(datas, tops):
 fs = np.array([datas[:, 520] - datas[:, 519]]).T
 fs = np.hstack((fs, np.array([datas[:, 520] + datas[:, 519]]).T))
 fs = np.hstack((fs, np.array([datas[:, 520] - datas[:, 271]]).T))
 fs = np.hstack((fs, np.array([datas[:, 520] + datas[:, 268]]).T))
 fs = np.hstack((fs, tops[:, 0:tops.shape[1]]))
 return fs

def single_stage_decision_tree(xs, ys, ts):
 xs_selected, ts_selected = feature_selection(xs, ys, ts)
 clf = tree.DecisionTreeRegressor(max_depth=10)
 clf = clf.fit(xs_selected, ys)
 Y = clf.predict(ts_selected)
 output_prediction(Y)

def two_stage_gradient_boosting(xs, ys, ysb, ts):
 # classification stage
 xsb, tsb = feature_selection(xs, ysb, ts)
 clf = GradientBoostingClassifier(n_estimators=200, learning_rate=0.3, min_samples_split=30,
min_samples_leaf=5)
 clf.fit(xsb, ysb)
 Y_bin = clf.predict(tsb)
 # regression stage
 ind_tsr = np.where(Y_bin > 0)[0]
 ts = ts[ind_tsr]
 ind_defaults = np.where(ys > 0)[0]
 xs = xs[ind_defaults]
 ysr = ys[ind_defaults]
 xsr, tsr = feature_selection(xs, ysr, ts)
 reg = GradientBoostingRegressor(n_estimators=200, learning_rate=0.1, min_samples_split=30,
min_samples_leaf=5, loss='lad')
 reg.fit(xsr, ysr)
 Y_defaults = reg.predict(tsr)
 Y = np.zeros(210944)
 Y[ind_tsr] = Y_defaults
 output_prediction(Y)

def output_prediction(Y):
 f = open('output.csv', 'w')
 f.write('id,loss\n')
 for i in range(len(Y)):
 if Y[i] > 100:

 Y[i] = 100
 elif Y[i] < 0:
 Y[i] = 0
 f.write(str(i+105472) + ',' + str(np.float(Y[i])) + '\n')
 f.close()

def main():
 two_stage_gradient_boosting(load_data())

